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Boundary value problems of the linear theory of viscoelasticity are solved using 
rational functions to approximate a function of the Poisson ratio. The problem 
of interpolation is solved for the class of rational fractions and the error of the 

approximation is estimated. 

1. Suppose that a sufficiently smooth function cp (0) of the real variable o is to be 
approximated on the interval a g o < b using another prescribed function, to a specified 
accuracy. The problem embraces that of interpolation, the latter consisting of finding 

the interpolation function fn (w) belonging to some class F and assuming, at the inter, 
polation nodes, i.e. at certain prescribed points 

wo, 01, 02.. . 1 ON 

of the segment [a, b] , the same values as the function cp (o),i. e. 

(1 .I) 

fjv @o) = ‘PO, fN @l) = ‘PI,. . . , fN@&J ‘cp (1.2) 
where 

(P,=(P (Q, n=O,i,... ,N (1.3) 

Depending on the class F , the interpolation problem may have an infinite number 

of solutions, or none. If polynomials of degree not greater than N are used to represent 
the function fN, then the interpolation problem has a unique solution. In this case the 
polynomials are called the interpolation polynomials. Sometimes the properties of the 
function 9, (0) are such that it is more convenient to write the functions fN (0) in the 
form of rational fractions M 

flv (0) = 2 P,&P, ) P, = 2 QiJ (1.4) 
i=o i=r 

where Pi and qi are constants. Obviously. the approximation (1.4) is more general than 
that employing the polynomials. 
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2, Remembering that the method is to be applied to the problems of the theory of 
viscoelasticity [l] we assume that the ~lynomial P, has real no~egative distinct 

roots and, that the numbers a and 6 are also nonnegative. The rational fraction flv ((u) 
can be written as a sum of a polynomial and a proper rational fraction. The problem of 

interpolation using polynomials is well known p]. We shall therefore consider the proper 
rational fractions, i.e. we assume that M < N. 

Under the assumptions made, every function fnt (w) of the class F can be written in 

the form iv 

(2.1) 

where Ai and & are constants. As fii are assumed given, we say that the poles of the 
function fN (a) are fixed. Jet us find the interpolation function fN (0) with fixed poles. 
To do this, we construct N -t- I equations 

n=Q,l,...,N (2.2) 

defining N + 1 unknowns di. As every expression (1 + fiio,) > 0 (i, n ‘0, 1, ..,, N), 
the determinant of the system (2.2) is positive and (2.2) has a unique solution 

N 

(2.3) 

i=o (i#k) i-0 (i#?L) 

Inserting (2.3) into (2.1) we obtain the interpolation formula for the present case. The 

uniqueness of (2.1) can be proved by induction, 

3. Let us compute the error of this approximation We assume that the function 
9 (0) has an ( N + 1 )-th derivative on the segment a < o f b. We set 

R, (4 = ‘P (4 - fN (4 (3.1) 

and introduce an auxilliary function 

where 
(3.2) 

(3.3) 

and a* is a fixed point on the segment [a, b] different from all the nodes (1. I.). Thus 
the function D (0) has N + 2 roots on the segment [a, b] and it follows that its (N i- 
I)-th derivative has at least one root. Therefore at some point f we have 
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N 

w(N+l) (!g = 0, UJ w = v (4 n (I + Pp) (3.4) 
i=o 

Let us multiply both sides of (3.2) by the denominator of the expression for X, and 
differentiate both sides N + 1 times. Taking into account (3.4) we have, at the point k 

Q (E) 
K= (N+~) I p Q(e)- do~+l 

i=o 

Equating (3.5) and (3.3) we obtain 
Q (4) 

RN(m*) = (N+I) 1 g, (%) 

The point CO* was chosen arbitrarily, hence 

II (1 + Pp) 
Lo 

MN 

’ RN (O) ’ ’ (N + 1) ! 
i=o 
N 

T]I (1 +Pi@) 
i=O 

II 

(3.5) 

(3.6) 

(3.7) 

4. Several remarks follow. 
1. If in (1.4) M = N, we must set PO = 0. 

2. If the term A, / o is included in (2. l), we must set A,, = fJoAo’ and perform 
the passage to the limit with p,, ---) CO. 

3. If one of the poles is not assumed fixed, it can be found by increasing the num- 

ber of nodes (1.1) by one. Then the system (2.2) must be solved from N + 2 equations 
for iV + 1 unknowns A i .and one unknown fir. Let us denote 

Q,r ; (co-co?), 
Qn,,: = 

Q, 

i> j=o 

ii- loi - Oj) 

i>j=O (i=kVj=p) 

Then the formulas (2.3) require the following additional expression: 

‘V+l 

2 (%QN+~,~ fi (1 $Pp,)] 
pj = - ;+:o i=o (i+j) 

N 
(i=O,l,...,N) 
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